
CSE 210: Computer Architecture

Lecture 8: Computer Representation of MIPS

instructions

Stephen Checkoway

Oberlin College

Oct. 20, 2021

Slides from Cynthia Taylor

Announcements

• Problem Set 2 due Friday

• Lab 1 due Sunday

• Office Hours Friday 13:30 – 14:30

How to Speak Computer
High Level Language

Program

Assembly Language
Program

Compiler
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Machine Interpretation

Machine Language
Program

Assembler

1000110001100010000000000000000

1000110011110010000000000000100

1010110011110010000000000000000

1010110001100010000000000000100

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

Two Key Principles of Machine Design
1. Instructions are represented as numbers and, as such, are indistinguishable

from data

2. Programs are stored in alterable memory (that can be read or written to) just
like data

Stored-program concept

• Programs can be shipped as files of binary

numbers – binary compatibility

• Computers can inherit ready-made software

provided they are compatible with an existing

ISA and OS – leads industry to align around a

small number of ISAs

Accounting prg

(machine code)

C compiler

(machine code)

Payroll data

Source code in C

for Acct prg

Memory

What happens if someone writes new machine code

in the memory where your program is stored,

overwriting your program?
A. The program will crash.

B. The old instructions will run.

C. The new instructions will run.

D. None of the above

Recall: Instruction Set Architecture

• Definition of how to access the hardware from software

• Supported instructions, registers, etc . . .

Key ISA decisions

• operations
§ how many?

§ which ones

• operands

§ how many?

§ location

§ types

• instruction format

§ size

§ how many formats?

y = x + b

operation

source operands

destination operand

how does the computer know what

0001 0100 1101 1111

means?

(add r1, r2, r5)

RISC versus CISC (Historically)

• Complex Instruction Set Computing

– Larger instruction set

– More complicated instructions built into hardware

– Variable number of clock cycles per instruction

• Reduced Instruction Set Computing

– Small, highly optimized set of instructions

– Memory accesses are specific instructions

– One instruction per clock cycle (only the very first RISCs!)

A = A*B

RISC

lw $t0, 0(A)

lw $t1, 0(B)

mul $s1, $t0, $t1

sw $s1, 0(A)

CISC

mul B, A

Which of these is faster?

RISC

lw $t0, 0(A)

lw $t1, 0(B)

mul $s1, $t0, $t1

sw $s1, 0(A)

CISC

mul B, A

RISC vs CISC

RISC

• More work for

compiler/assembly

programmer

• More RAM used to store

instructions

• Less complex hardware

CISC

• Less work for

compiler/assembly

programmer

• Fewer instructions to store

• More complex hardware

So . . . Which System “Won”?

• Most processors are RISC

• BUT the x86 (Intel) is CISC

• x86 breaks down CISC assembly into multiple, RISC-like,

machine language instructions

• Distinction between RISC and CISC is less clear

– Some RISC instruction sets have more instructions than some CISC

sets

The computer figures out what format an

instruction is from

A. Codes embedded in the instruction itself.

B. A special register that is loaded with the instruction.

C. It tries each format and sees which one forms a valid
instruction.

D. None of the above

Instruction Formats

What does each bit

mean?

• Having many different

instruction formats...

– complicates decoding

– uses more instruction

bits (to specify the

format)

Your architecture supports 16 instructions and 16

registers (0-15). You have fixed width instructions

which are 16 bits. How many register operands can

you specify (explicitly) in an add instruction?

A. ≤ 1 operand

B. ≤ 2 operands

C. ≤ 3 operands

D. ≤ 4 operands

E. None of the above

Hint: Remember you need to

specify which instruction it is,

and all the registers

Reading

• Next lecture: More on representing instructions

– Section 2.6

• Problem Set 2 due Friday

• Lab 1 due Sunday

